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Abstract
We present an extension to the Tacotron speech
synthesis architecture that learns a latent embed-
ding space of prosody, derived from a reference
acoustic representation containing the desired
prosody. We show that conditioning Tacotron
on this learned embedding space results in syn-
thesized audio that matches the prosody of the
reference signal with fine time detail even when
the reference and synthesis speakers are different.
Additionally, we show that a reference prosody
embedding can be used to synthesize text that
is different from that of the reference utterance.
We define several quantitative and subjective met-
rics for evaluating prosody transfer, and report
results with accompanying audio samples from
single-speaker and 44-speaker Tacotron models
on a prosody transfer task.

1. Introduction
In order to produce realistic speech, a text-to-speech (TTS)
system must implicitly or explicitly impute many factors
that are not given in a simple text input. Such factors include
the intonation, stress, rhythm and style of the speech, and
are collectively referred to as prosody.

Speech synthesis via text-to-speech is a challenging under-
determined problem, since the meaning expressed by an
utterance is inherently underspecified by the text. For exam-
ple, the simple statement “The cat sat on the mat.” can be
spoken many different ways. If the statement is the answer
to the question “Where did the cat sit?” the speaker might
stress the word “mat” to indicate that it is the answer to
the question. To express uncertainty in their knowledge,
the speaker may decide to intone the response with a rising
pitch. The question, “Would you like an apple or an orange?”
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Sound demos are available at https://google.
github.io/tacotron/publications/end_to_
end_prosody_transfer.

can also be spoken in multiple ways, indicating information
about the set of objects that exist. If there are only two possi-
ble options, the intonation of the final option (“orange”) will
have a declining pitch. If there are a variety of options of
which apple and orange are just two examples, both options
are typically intoned with a rising pitch. The intonation of
these sentences carries meaning about the environment or
context of the question which is unspecified by the text, and
in general, there are any number of such nuances present in
speech that convey information beyond the textual content.

In order to avoid the challenging problem of schematizing
and labeling prosody, we seek methods of modeling prosody
that do not require explicit annotations, and present an ar-
chitecture for learning a latent prosody representation by
extracting it from the ground truth speech audio. Accord-
ingly, we use a “subtractive” definition of prosody:

Definition. Prosody is the variation in speech signals that
remains after accounting for variation due to phonetics,
speaker identity, and channel effects (i.e. the recording
environment).

This view of prosody is compatible with interpretations of
prosody from previous works (Wagner & Watson, 2010;
Ladd, 2008).

One natural problem that arises from this formulation is
sampling – that is, the challenge of generating diverse and
interesting prosody and output speech even for identical
phonetics, speaker identities and channel effects. In this
paper, we tackle the more basic problem of constructing a
space that represents prosody. We propose one possible con-
struction of a prosody latent space, and show that we capture
meaningful variation in speech by demonstrating transfer
in this space (i.e., using a latent representation to make one
utterance sound like another): this roughly corresponds to a
“say it like this” task.

The recently proposed Tacotron speech synthesis system
(Wang et al., 2017a) computes its output directly from
graphemes or phonemes, and its prosody model is implicit,
learned from the statistics of the training data alone. It
learns, for example, that an English sentence ending in a
question mark likely has a rising pitch if the question has a
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yes-or-no answer. In this work, we augment Tacotron with
explicit prosody controls. We accomplish this by learning
an encoder architecture that computes a low-dimensional
embedding from a speech signal, where the embedding pro-
vides information not provided by the text and speaker iden-
tity. Through careful experiments, we demonstrate that this
prosody embedding can be used to reproduce the desired
prosody using Tacotron.

The immediate implication of this acoustic encoder archi-
tecture and prosody latent space is that we can control the
behavior of a TTS system using a different voice than the
one used in training. The resulting embedding is fixed-
length and often smaller than the transcript, so it can be
easily stored alongside the text for use in a production sys-
tem. The longer-term implications are that we can build
models that predict prosody embeddings from non-acoustic
context, such as prosody labels or conversation state.

Our main contribution is an encoder architecture that ex-
tracts a fixed-length learned representation of prosody from
acoustic input; we demonstrate that this encoder allows
us to transfer prosody between utterances in an almost
speaker-independent fashion. To evaluate performance in
this prosody transfer task, we propose a number of quan-
titative and qualitative metrics. Additionally, we strongly
encourage the reader to listen to the audio samples on our
demo page.

2. Related Work
Prosody and speaking style modeling have been studied
since the era of HMM-based TTS research. For example,
(Eyben et al., 2012) proposes a system that first clusters the
training set, and then performs HMM-based cluster-adaptive
training. (Nose et al., 2007) proposes estimating the trans-
formation matrix for a set of predefined style vectors.

Numerous works have explored annotation schemes for dia-
gramming and automatic labeling of prosody: ToBi (Silver-
man et al., 1992), AuToBI (Rosenberg, 2010), Tilt (Taylor,
1998), INTSINT (Hirst, 2001), SLAM (Obin et al., 2014)
all describe methods for the annotation and automatic ex-
traction of labels or annotations that correlate with prosodic
phenomena. The challenges of annotation often require do-
main experts,however, and inter-rater annotations can differ
substantially (Wightman, 2002).

Few works propose the use of acoustic reference signals to
control the prosody of a text-to-speech model. (Tesser et al.,
2013) proposes the use of “signal driven” features to predict
symbolic prosody representations, using AuToBI labels to
improve HMM-based synthesis. (Coile et al., 1994) propose
“prosody transplantation” via a system called PROTRAN
for recording a low-bit-rate “enriched phonetic transcrip-
tion” that can be used in conjunction with desired text to

reproduce the prosody of an original recording. Note that
the same product needs described in (Coile et al., 1994)
motivate the development of this paper.

Prosody transfer is related to the task of voice conversion
(also called style transfer in the audio context). To perform
voice conversion, a model must synthesize an utterance,
given only the acoustic signal of that utterance in a different
speaker’s voice (Wu et al., 2013; Nakashika et al., 2016;
Kinnunen et al., 2017; van den Oord et al., 2017; Chorowski
et al., 2017). An approach similar to ours can be found in
(Wang et al., 2018), where a more complicated autoencoder
is used to learn some elements of style in an unsupervised
fashion.

3. Model Architecture
Our model is based on Tacotron (Wang et al., 2017a), a
recently proposed state-of-the-art end-to-end speech syn-
thesis model that predicts mel spectrograms directly from
grapheme or phoneme sequences. The predicted mel spec-
trograms can either be synthesized directly to the time-
domain via a WaveNet vocoder (Shen et al., 2017), or by
first learning a linear spectrogram prediction network, and
then applying Griffin-Lim spectrogram inversion (Griffin &
Lim, 1984).

In this work, we use the original encoder and decoder ar-
chitecture from (Wang et al., 2017a), not the simplified
architecture proposed by (Shen et al., 2017). Additionally,
we exclusively use phoneme inputs produced by a text nor-
malization front-end and lexicon, as we are specifically
interested in addressing prosody, not the model’s ability to
learn pronunciation from graphemes. Finally, instead of the
Bahdanau attention used in (Wang et al., 2017a), we use the
GMM attention of (Graves, 2013) which we find improves
generalization to long utterances.

The audio samples included on our demo page were pro-
duced with a WaveNet vocoder (Shen et al., 2017); however,
the original linear-spectrogram prediction network followed
by Griffin-Lim spectrogram inversion from (Wang et al.,
2017a) works equally well for prosody transfer. In practice,
we find the choice of neural vocoder only impacts audio
fidelity and has no impact on the system’s resulting prosody.

3.1. Multi-speaker Tacotron

Tacotron as proposed in (Wang et al., 2017a) does not in-
clude explicit modeling of speaker identity; however, due
to the flexibility of all neural sequence-to-sequence models,
learning multi-speaker models via conditioning on speaker
identity is straightforward. We follow a scheme similar to
(Arık et al., 2017) to model multiple speakers.

The Tacotron architecture conditions an auto-regressive de-
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Figure 1. The full Tacotron architecture for prosody control. The autoregressive decoder is conditioned on the result of the reference
encoder, transcript encoder, and speaker embedding via an attention module.

coder on an LT × dT -dimensional representation of the
phoneme or grapheme sequence produced by a transcript
encoder architecture, where LT is the length of the encoded
transcript representation (typically equal to the length of
the input transcript) and dT is the embedding dimension
produced by the transcript encoder. For each speaker in the
dataset, a RdS embedding vector is initialized with Glorot
(Glorot & Bengio, 2010) initialization. For each example,
the dS-dimensional speaker embedding corresponding to
the true speaker of the example is broadcast-concatenated
with the LT × dT -dimensional transcript encoder represen-
tation to form a (dT +dS)-dimensional sequence of encoder
embeddings that the decoder will attend to. No additional
changes or loss metrics are necessary.

3.2. Reference Encoder

We extend the Tacotron architecture by adding a “refer-
ence encoder” module that takes a length-LR and dR-
dimensional reference signal as input, and computes a dP -
dimensional embedding from it. We think of this fixed-
dimensional embedding as the “prosody space” – our goal
is that sampling from this space will yield diverse and plau-
sible output speech, and that we can manipulate elements of

this space to control the output meaningfully.

As with the speaker embedding, this prosody embedding
is combined with the LT × dT text encoder representation
via a broadcast-concatenation. In combination with the
speaker embeddings described in Section 3.1, the encoder
embeddings form a LT ×(dT +dS+dP ) embedding matrix,
where the speaker and prosody embeddings are fixed across
all timesteps. Figure 1 illustrates this structure.

During training, the reference acoustic signal is simply the
target audio sequence being modeled. No explicit super-
vision signal is used to train the reference encoder; it is
learned using Tacotron’s reconstruction error as its only loss.
In training, one can think of the combined system as an
RNN encoder-decoder (Cho et al., 2014b) with phonetic
and speaker information as conditioning input. For a suffi-
ciently high-capacity embedding, this representation could
simply learn to copy the input to the output during train-
ing. Therefore, as with an autoencoder, care must be taken
to choose an architecture that sufficiently bottlenecks the
prosody embedding such that it is forced to learn a compact
representation.

During inference, we can use the prosody reference encoder
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Figure 2. The prosody reference encoder module. A 6-layer stack
of 2D convolutions with batch normalization, followed by “recur-
rent pooling” to summarize the variable length sequence, followed
by an optional fully connected layer and activation.

to encode any utterance: we are not constrained to match
either the text input or the provided speaker embedding. In
particular, this enables the possibility of prosody transfer –
using an utterance by a different speaker, or different text
to control the output. We study prosody transfer in detail in
Section 4.

For the reference encoder architecture (Figure 2), we use a
simple 6-layer convolutional network. Each layer is com-
posed of 3× 3 filters with 2× 2 stride, SAME padding and
ReLU activation. Batch normalization (Ioffe & Szegedy,
2015) is applied to every layer. The number of filters in each
layer doubles at half the rate of downsampling: 32, 32, 64,
64, 128, 128.

The LR × dR reference signal is downsampled by this ar-
chitecture 64 times in both dimensions. The ddR/64e fea-
ture dimensions and 128 channels of the final convolution
layer are unrolled as the inner dimension of the resulting
dLR/64e×128ddR/64ematrix. To compress the dLR/64e-
length sequence produced by the CNN layers down to a
single fixed-length vector, we use a recurrent neural net-
work with a single 128-width Gated Recurrent Unit (GRU)
(Cho et al., 2014a) layer. We take the final 128-dimensional
output of the GRU as the pooled summarization of the se-
quence.

To compute the final dP -dimensional embedding from the
128-dimensional output of the GRU, we apply a fully-
connected layer to project the output to the desired dimen-
sionality, followed by an activation function (e.g. softmax,
tanh). The choice of activation function can constrain the
information contained in the embedding and make learning
easier by controlling its magnitude. After some exploration,

Reference
Encoder

Prosody 
Embedding

Reference 
Spectrogram Slices

Conditioned
Decoder

Conditioning Input

Neural Vocoder

Figure 3. An interpretation of the Tacotron architecture for prosody
control from Figure 1 as an RNN encoder-decoder with speaker
and phonetic conditioning input.

we found that a dP of 128 and a tanh activation perform
well in practice.

3.3. Reference signal feature representation

The choice of LR × dR feature representation used as the
input to the reference encoder architecture naturally impacts
the aspects of prosody we can expect to learn. For example,
a pitch track representation will not allow us to model promi-
nence in some languages since it does not contain energy in-
formation. Similarly an MFCC representation may be some-
what pitch-invariant (depending on the number of coeffi-
cients retained), preventing us from modeling intonation. In
this work, we decided to use the same perceptually-relevant
summarization of the spectrum that (Wang et al., 2017a)
does: the mel-warped spectrum (Stevens et al., 1937).

This choice of representation enables an interpretation of
the resulting architecture as an RNN encoder-decoder (Cho
et al., 2014b) conditioned on text and speaker identity. All
it must model via its bottleneck representation is the unex-
plained variation in the signal, i.e. the prosody and recording
environment. We illustrate this interpretation in Figure 3.

We explored more compact representations, such as pitch
track and intensity, instead of mel spectrograms, which also
produced successful results, but we focus on mel spectro-
grams in this paper.

3.4. Variable-Length Prosody Embeddings

The use of a fixed-length prosody embedding poses an ob-
vious scaling bottleneck, preventing the extension of this
approach to longer utterances. An alternate implementation
of the reference encoder in Section 3.2 uses the output of the
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GRU at every time step rather than just the final output. As
with the fixed-length encoder, each GRU output is passed
through a fully connected layer to transform it to the desired
dimensionality. This can be interpreted as a low-bitrate rep-
resentation of prosody similar to the proposal of Enhanced
Phonetic Transcriptions in (Coile et al., 1994). To condition
the Tacotron decoder on this sequence, we introduce a sec-
ond attention head with an attention-aggregator module as
proposed in (Wang et al., 2017b).

In our experiments, variable-length prosody embeddings
are able to generalize to very long utterances; however,
compared to fixed-length embeddings, variable-length em-
beddings are not as robust to text and speaker perturbations
likely because they encode a stronger timing signal. There-
fore, this paper focuses on fixed-length embeddings.

4. Experiments and Results
4.1. Datasets and training

We use the following datasets:

Single-speaker dataset: A single speaker high-quality En-
glish dataset of audiobook recordings by Catherine
Byers (the speaker from the 2013 Blizzard Challenge).
This dataset consists of 147 hours of recordings of 49
books, read in an animated and emotive storytelling
style.

Multi-speaker dataset: A proprietary high-quality En-
glish speech dataset consisting of 296 hours across
44 speakers (5 with Australian accents, 6 with British
accents, 1 with an Indian accent, 2 with Singaporean
accents, and 30 with United States accents).

We train our models for at least 200k steps with a minibatch
size of 256 using the Adam optimizer (Kingma & Ba, 2015).
We start with a learning rate of 1× 10−3 and decay it to
5× 10−4, 3× 10−4, 1× 10−4, and 5× 10−5 at step 50k,
100k, 150k, and 200k respectively. For baselines, we train
models without the reference encoder architecture (Section
3).

4.2. Evaluation metrics

There are no generally-accepted metrics for prosody trans-
fer. To measure performance, we adapt a number of metrics
from general audio processing, each of which reflects an
acoustic correlate of prosody. For all comparisons of pre-
dicted signals to target signals, we extend the shorter signal
to the length of the longer signal using a domain-appropriate
padding (e.g. 0 for a time-domain waveform, −13.8 for a
log magnitude spectrogram with a 1× 10−6 stabilizing off-
set). All pitch and voicing metrics are computed using the

output of the YIN (De Cheveigné & Kawahara, 2002) pitch
tracking algorithm.

Mel Cepstral Distortion (MCDK) (Kubichek, 1993):

MCDK =
1

T

T−1∑
t=0

√√√√ K∑
k=1

(
ct,k − c′t,k

)2
Where ct,k,c′t,k are the k-th mel frequency cepstral co-
efficient (MFCC) of the t-th frame from the reference
and predicted audio. We sum the squared differences
over the first K MFCCs, skipping ct,0 (overall energy).

Gross Pitch Error (GPE) (Nakatani et al., 2008):

GPE =

∑
t 1 [|pt − p′t| > 0.2pt]1[vt]1[v

′
t]∑

t 1[vt]1[v
′
t]

Where pt,p′t are the pitch signals from the reference
and predicted audio, vt,v′t are the voicing decisions
from the reference and predicted audio, and 1 is the
indicator function. The GPE measures the percentage
of voiced frames that deviate in pitch by more than
20% compared to the reference.

Voicing Decision Error (VDE) (Nakatani et al., 2008):

VDE =

∑T−1
t=0 1[vt 6= v′t]

T

Where vt,v′t are the voicing decisions for the reference
and predicted audio, T is the total number of frames,
and 1 is the indicator function.

F0 Frame Error (FFE) (Chu & Alwan, 2009):∑T−1
t=0 1 [|pt − p′t| > 0.2pt]1[vt]1[v

′
t] + 1[vt 6= v′t]

T

FFE measures the percentage of frames that either con-
tain a 20% pitch error (according to GPE) or a voicing
decision error (according to VDE).

In addition to these metrics, we propose a subjective (i.e.,
human) test structured as an AXY discrimination test that
we refer to as an “anchored prosody side-by-side”. A human
rater is presented with three stimuli: a reference speech sam-
ple (A), and two competing samples (X and Y) to evaluate.
The rater is asked to rate whether the prosody of X or Y
is closer to that of the reference on a 7-point scale. The
scale ranges from “X is much closer” to “Both are about the
same distance” to “Y is much closer”, and can naturally be
mapped on the integers from−3 to 3. Prior to collecting any
ratings, we provide the raters with 4 examples of prosodic
attributes to evaluate (intonation, stress, speaking rate, and
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Table 1. A summary of quantitative and subjective metrics (Section 4.2) used to evaluate the prosody transfer. Lower is better for both
MCDk and FFE. Higher subjective scores are better, and indicate whether human raters believe the voice is closer in prosody to the
reference than the corresponding baseline model on a 7 point (−3 to 3) scale, where 0 is “about the same”.

VOICE MODEL REFERENCE MCD13 FFE SUBJECTIVE

SINGLE-SPEAKER BASELINE SAME SPEAKER 10.63 53.2%
SINGLE-SPEAKER TANH-128 SAME SPEAKER 7.92 28.1% 1.611± 0.164

SINGLE-SPEAKER BASELINE UNSEEN SPEAKER 11.22 59.6%
SINGLE-SPEAKER TANH-128 UNSEEN SPEAKER 8.89 38.0% 1.465± 0.132

MULTI-SPEAKER BASELINE SAME SPEAKER 9.93 48.5%
MULTI-SPEAKER TANH-128 SAME SPEAKER 6.99 27.5% 1.307± 0.127

MULTI-SPEAKER BASELINE SEEN SPEAKER 12.37 64.2%
MULTI-SPEAKER TANH-128 SEEN SPEAKER 9.51 37.1% 0.871± 0.138

MULTI-SPEAKER BASELINE UNSEEN SPEAKER 11.84 60.0%
MULTI-SPEAKER TANH-128 UNSEEN SPEAKER 10.87 41.3% 1.146± 0.246

pauses), and explicitly instruct the raters to ignore audio
quality or pronunciation differences. A screenshot of this
user interface is included in Figure 7. For each triplet (A,
X, Y) evaluated, we collect 4 independent ratings. No rater
is used for more than 6 items in a single evaluation. To
analyze the data from these subjective tests, we average the
scores and compute 95% confidence intervals.

4.3. Same-text Prosody Transfer

We first demonstrate that our model is capable of prosody
transfer when the text is unchanged from that of the refer-
ence utterance.

4.3.1. SPECTROGRAMS AND PITCH TRACKS

Figure 4 shows three spectrograms (reference, baseline
model, prosody embedding model) for the same utterance.
Note that the spectrogram from the model conditioned on a
reference embedding bears a much stronger resemblance to
the reference signal than that generated by an unconditioned
model. In particular, notice that the spectrogram from the
baseline model, which does not use a reference signal, ex-
hibits noticeably different rhythm – for example, there is a
long pause between the two halves of the utterance, and the
utterance lasts much longer. By contrast, the output with
a prosody embedding has the same length and pause char-
acteristics as the reference audio; it also has recognizably
similar harmonic and onset structure.

Figure 5 shows the pitch tracks for the same triplet of ut-
terances. We can see that the prosody embedding model
closely follows the pitch contours of the reference, whereas
the unconditioned model does something else entirely.

4.3.2. QUANTITATIVE AND SUBJECTIVE EVALUATIONS

We evaluated synthesis of single- and multi-speaker models
using two types of reference utterance. “Same speaker” in-
dicates a reference utterance from the same speaker as the
target, while “unseen speaker” refers to a reference utterance
from a speaker unseen in training. For the multi-speaker
model, we also tested synthesis with a speaker seen in train-
ing but different from the target speaker (“seen speaker”).

We present our findings in Table 1. The results show that
augmenting Tacotron with a reference encoder allows it to
match the reference prosody substantially more accurately.
This is true for all baseline/model pairs in Table 1, and is
independent of whether the reference speaker matches the
target speaker. The objective metrics MCD13 and FFE also
support this conclusion, both resulting in substantially lower
values for the reference encoder model than for the baseline
model.

Note that when the target and reference speakers are dif-
ferent (i.e., when the reference in Table 1 is either “seen
speaker” or “unseen speaker”), we must be careful to demon-
strate that prosody transfer has been achieved. If the bot-
tleneck allows too much information to flow through the
reference encoder, for example, the overall model could
simply copy the reference to the output. In this instance,
listening to even a small number of outputs suffices to ver-
ify that the output speaker matches the target speaker, and
that we have in fact achieved prosody transfer across speak-
ers. However, further experiments, explored in Section 4.5,
provide some surprising results.

4.4. Templated Prosody Transfer

In addition to same-text prosody transfer, we also explore
the robustness of our proposed model to changes in the
synthesized text. Since the prosody embeddings we learn
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Figure 4. Mel spectrograms for the utterance “Snuffles is a lot
happier. And smells a lot better.” (Top) Reference utterance from
an unseen speaker. (Middle) Synthesized utterance conditioned
on reference embedding. (Bottom) Synthesized utterance from a
model without reference conditioning.

capture prosodic features with some fine time detail, it isn’t
clear what it would mean to transfer these prosodic fea-
tures to a radically different utterance. As expected, we
find that drastic changes to the sentence or phrase struc-
ture result in undesirable prosody transfer. This use case
may be more suited to models that capture less granular
features of prosody such as emotion or style. (Wang et al.,
2018), for example, applies a similar approach to learning
representations of global style.

Nonetheless, we include a number of examples on our
demo page demonstrating that text transformations can be
performed without compromising intelligibility or desired
prosody. This can be highly useful in building templated
dialogue systems capable of synthesizing a template with a
desired prosody.

4.5. Preservation of Speaker Identity

In Table 1, the results of our “anchored prosody side-by-side”
subjective evaluation show that reference-based synthesis
matches the reference audio significantly better than the
baseline model. However, the evaluation does not assess
whether the target speaker identity was preserved by the
synthesis. This is not accidental: pitch, pacing, and other
prosodic characteristics factor into speaker identity, and
thus it is difficult to prescribe exactly which aspects of the
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Figure 5. Pitch tracks for the utterance “Snuffles is a lot happier.
And smells a lot better.” A pitch of 0 Hz indicates an unvoiced
segment. (Top) Reference utterance from an unseen speaker. (Mid-
dle) Synthesized utterance conditioned on reference embedding.
(Bottom) Synthesized utterance from a model without reference
conditioning.

target speaker’s identity should be preserved during prosody
transfer.

The audio samples we include on our demo page show that
our model preserves many important aspects of speaker
identity during prosody transfer. We include a grid of au-
dio examples representative of typical performance of this
system, with reference clips from 6 speakers with distinct
accents. Each utterance is synthesized 6 times, each with a
different target speaker. Notably, the prosody of each clip
matches that of the reference, while the distinct accents and
vocal tract properties of each speaker are preserved.

However, listening to samples of a male voice controlling
a female voice (and vice-versa) reveals that our prosody
representation encodes pitch in an absolute manner. When
controlled by a male reference signal, female target speakers
sound as if they’re imitating a person with a deeper voice.
Similarly, when controlled by a female reference signal,
male speakers sound as if they’re imitating a person with
a higher voice. This suggests that the prosody and speaker
representations are somewhat entangled.

To quantify this entanglement, we designed a simple speaker
identification model that takes varying types of acoustic in-
put, and produces predictions of speaker identity from a
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universe of speakers known at training time. The archi-
tecture uses the same strided convolutions and GRU-based
aggregation as the reference encoder architecture from Sec-
tion 3.2, and is independently trained on ground truth mel
spectrograms using the same 44-speaker dataset used to
train our multi-speaker model. The architecture achieves
over 99% accuracy on both the held-out ground truth and
synthesized audio from our baseline 44-speaker model.

We then tested our prosody-enhanced Tacotron using this
model. To do so, we first constructed pairs of all target
speakers and reference utterances in the test set. We then
used our prosody-enhanced Tacotron to generate mel spec-
trograms for these pairs, and fed the output into the speaker
identification model. The speaker identification model iden-
tified the spectrograms as originating from the reference
speaker in 61% of test set examples, and the target speaker
only 21% of the time (ideally, the target speaker would be
at 100%). We refer the reader to the audio samples to un-
derstand how surprising this is – the audio samples sound
substantially more like the target speaker in every sample
we’ve listened to.

Since our model seems to transfer prosody in a pitch-
absolute manner, we ran a further experiment where
we trained the speaker identification model on 13 Mel-
frequency cepstral coefficients (MFCCs) which contain less
pitch content. In this case, the speaker identification model
identified the utterances as originating from the reference
speaker 41% of the time, and the target speaker 32% of
the time, suggesting that, indeed, speaker-dependent pitch
content is transferred from the reference to the output.

4.6. Bottleneck Size and Shape
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Figure 6. The effect of bottleneck size on quantitative metrics. In
terms of both MCD13 and FFE, models with prosody encoders beat
the baseline. As the bottleneck size increases, the performance in
both metrics improve. Softmax is a more severe bottleneck than
tanh, and exhibits worse metrics.

The dimensionality and activation used for the bottleneck
substantially affect the information flow from the prosody

reference encoder to the output. In this experiment, we use
our single speaker as both the reference signal and target
(we are essentially trying to conditionally autoencode the
mel spectrograms given text). We plot the MCD13 and FFE
metrics while varying the bottleneck size and activation
in Figure 6, and include a series of audio samples on our
demo page. We can conclude that increasing the bottleneck
size allows for significantly more information flow from the
reference to the output, allowing for better reproduction of
the reference. More interestingly, using a softmax activation
leads to a degradation of metrics in comparison to tanh:
this is probably due to the exponential suppression of the
non-maximal components in the softmax.

The quantitative metrics are in agreement with the audio
samples provided on our demo page: larger bottlenecks with
the tanh activation improve audio similarity, and the outputs
are more faithful to the reference prosody. A potential trade-
off is that a narrower bottleneck would likely better preserve
the speaker identity of the target speaker.

5. Discussion and Future Work
In this work, we have demonstrated prosody transfer via an
end-to-end learned representation of prosody directly from
acoustic signals. While our system successfully transfers
prosody from one speaker to another, it does so in a pitch-
absolute manner. Future work should focus on encoding
prosody in a pitch-relative manner so that speaker identity
is more completely preserved during transfer.

A substantial open question is how to disentangle the tex-
tual information implicit in the reference signal from the
prosodic information. In Section 4.4, we showed that this
is possible to some extent, especially when the transcripts
are relatively close. But, more generally, this amounts to
transferring or controlling prosody using utterances with
different corresponding text transcripts. As noted earlier,
this is a somewhat ill-defined task, and a more careful for-
malization of this problem is needed to make real progress.

We also defined objective and subjective metrics for evaluat-
ing prosody transfer, and evaluated our architecture on these
benchmarks. Solidifying metrics that quantify all desired
aspects of prosody transfer (e.g., prosodic similarity and
the degree to which prosodic, textual, and speaker informa-
tion are disentangled) is an important step in the long-term
progression of end-to-end prosody work.

Finally, given our construction of a prosody space, we would
like to be able to sample from this space (i.e., generate
prosody instead of transferring it). One could, for example,
attempt to learn a prior distribution over the prosody space.

https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
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A. Subjective Evaluation Template

Figure 7. The subjective evaluation template described in Section 4.2. A human rater is presented with three stimuli: a reference speech
sample (A), and two competing samples (X and Y) to evaluate. The rater is asked to rate whether the prosody of X or Y is closer to that of
the reference on a 7-point scale. The scale ranges from “X is much closer” to “Both are about the same distance” to “Y is much closer”,
and can naturally be mapped on the integers from −3 to 3. Prior to collecting any ratings, we provide the raters with 4 examples of
prosodic attributes to evaluate (intonation, stress, speaking rate, and pauses), and explicitly instruct the raters to ignore audio quality or
pronunciation differences. For each triplet (A, X, Y) evaluated, we collect 4 independent ratings. No rater is used for more than 6 items in
a single evaluation. To analyze the data from these subjective tests, we average the scores and compute 95% confidence intervals.


